Advanced ODE-Lecture 4 Continuous and Differentiable Solution on Data

Dr. Zhiming Wang

Professor of Mathematics East China Normal University, Shanghai, China

Advanced ODE Course October 14, 2014

Outline

- Motivation
- Continuous Dependence of Solution on Data
- A Strong Version of Continuous Dependence on Data
- Differentiability of Solution on Data
- Summary

Motivation

1) Continuous Dependence on Data

- A good math model should have continuous solutions w.r.t. an initial data
 (t₀, x₀) and a system parameter μ of f(t, x, μ) small errors in data or
 parameter yield solutions that are close (over some finite time interval) –
 Well-Posedness!
- The above property is called continuous dependence on data (parameter). This
 continuous dependence property is not possible at points where the solution is
 not unique! Why?

2) Sensitivity of Variation on Data

• It is natural to ask differentiability of solutions w.r.t. data to characterize the sensitivity of variation on data – **Differentiability Theorem**.

Remark 4.1. The general form of the IVP with data is given by

$$\begin{cases} x' = f(t, x, \mu) \\ x(t_0) = x_0 \end{cases}, \qquad (E_{\mu})$$

where $\mu = (\mu_1, \mu_2, \dots, \mu_s)^T \in \mathbb{R}^s$. Let $z = (x, \mu) \in \mathbb{R}^n \times \mathbb{R}^s$, then

$$\begin{cases} z' = \overline{f}(t, z) \\ z(t_0) = z_0 \end{cases} \Leftrightarrow \begin{cases} x' = f(t, x, \mu), & \mu' = 0 \\ x(t_0) = x_0, & \mu(t_0) = \mu \end{cases}$$
 (H_{μ})

It is easy to show (**Homework-1**):

- a) $z(t) = (x(t), \mu(t))$ is a solution of $(H_{\mu}) \Leftrightarrow x(t)$ is a solution of (E_{μ}) and $\mu(t) \equiv \mu$;
- b) If (E_{μ}) has a unique solution, so does (H_{μ}) .

Then (H_{μ}) has the same structure to the IVP given before. The only difference is their dimensions. For simplicity of notation, we still consider the IVP just regarding (t_0, x_0) as data.

Continuous Dependence of Solution on Data

1) Well-Posedness. The IVP is called well posed if there exists a unique solution $x(t, t_0, x_0)$, which depends continuously on (t_0, x_0) .

2) Continuous Dependence of Solution on Data (t_0, x_0)

The real initial value (t_0, x_0) is obtained by measurement. Suppose the measured initial value is (t_0, x_0) , satisfying the following error condition.

$$|t_0 - t_0^0| \le \frac{h}{2}; \quad ||x_0 - x_0^0|| \le \frac{b}{2},$$

where (t_0^0, x_0^0) is the nominal (ideal) initial value such that the following IVP

$$\begin{cases} x' = f(t, x) \\ x(t_0^0) = x_0^0 \end{cases}$$
 (E₀)

has a unique solution $x(t, t_0^0, x_0^0)$ in

$$Q = \{(t, x) \in R \times R^n : |t - t_0^0| \le a, ||x - x_0^0| \le b\}.$$

Let $U = \{(t_0, x_0) \in R \times R^n : |t_0 - t_0^0| \le \frac{h}{2}, ||x_0 - x_0^0|| \le \frac{b}{2}\} \subseteq Q$. Then, the continuous property of $x(t, t_0, x_0)$ of the IVP in the defined domain is discussed as follows.

$$G = \{(t, t_0, x_0) \in R \times R \times R^n : |t - t_0| \le \frac{h}{2}; (t_0, x_0) \in U\}.$$

Theorem 4.1 Suppose that f(t,x) is continuous; Lipschitz on Q and $(t_0,x_0) \in U$.

Then the solution $x(t, t_0, x_0)$ of the IVP is continuous on $(t, t_0, x_0) \in G$.

Proof. First, we construct the Picard sequence $\{x_n(t, t_0, x_0)\}$ $(n \in N^+)$ on $t \in [t_0 - h, t_0 + h]$ as follows.

$$x_0(t, t_0, x_0) = x_0, \quad (t, t_0, x_0) \in G;$$

$$x_1(t, t_0, x_0) = x_0 + \int_{t_0}^t f(s, x_0(s, t_0, x_0)) ds, \quad (t, t_0, x_0) \in G;$$

. . .

$$x_{n+1}(t, t_0, x_0) = x_0 + \int_{t_0}^t f(s, x_n(s, t_0, x_0)) ds, \quad (t, t_0, x_0) \in G;$$

It is the same to show that the Picard sequence $\{x_n(t, t_0, x_0)\}$ is uniformly convergent to $x(t, t_0, x_0)$. That is,

$$||x_{n}(t, t_{0}, x_{0}) - x(t, t_{0}, x_{0})|| \leq \frac{ML^{n-1}}{n!} |t - t_{0}|^{n} \leq \frac{ML^{n-1}}{n!} (|t - t_{0}^{0}| + |t_{0}^{0} - t_{0}|)^{n}$$

$$\leq \frac{ML^{n-1}}{n!} (\frac{h}{2} + \frac{h}{2})^{n} = \frac{ML^{n-1}}{n!} h^{n}.$$

Meanwhile, $x(t, t_0, x_0)$ is a solution of the IVP, and continuous on $(t, t_0, x_0) \in G$ because $x_n(t, t_0, x_0)$ is continuous on $(t, t_0, x_0) \in G$ for each $n \in N^+$. \square **Remark 4.2** For each $n \in N^+$, $x_n(t, t_0, x_0)$ is continuous on (t_0, x_0) for the fixed $t \in [t_0^0 - \frac{h}{2}, t_0^0 + \frac{h}{2}]$. Therefore, $x_n(t, t_0, x_0)$ for each $n \in N^+$ is continuous on $(t, t_0, x_0) \in G$.

Remark 4.3 The reason of defining U and G above. Since $(t_0, x_0) \in U$ in $\{x_n(t, t_0, x_0)\}$, the interval $|t - t_0| \le h$ varies with t_0 . Therefore, the intervals of $\{x_n(t, t_0, x_0)\}$ for each $n \in N^+$ may not be the same in general. For a rigorous sense, we may find

$$[t_0^0 - \frac{h}{2}, t_0^0 + \frac{h}{2}] = \bigcap_{|t_0 - t_0^0| \le \frac{h}{2}} [t_0 - h, t_0 + h]$$

that is a common interval of $\{x_n(t,t_0,x_0)\}$ by using $|t_0-t_0^0| \le \frac{h}{2}$. Therefore, $t \in [t_0^0 - \frac{h}{2}, t_0^0 + \frac{h}{2}]$ is a reasonable common interval. That is, $(t,t_0,x_0) \in G$.

A Strong Version of Continuous Dependence on Data

Theorem 4.2 Suppose that G is an open set in $R \times R^n$, $f: G \to R^n$ is continuous and local Lipschitz. Let $x(t, t_0, x_0)$ be a solution of the IVP defined on $[t_0, b]$, $b < \omega_+$, and $x(t, t_0, x_1)$ be a solution of the following IVP:

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_1 \end{cases}$$
 (E₁)

Then, for $\forall \varepsilon > 0$, there exists $\delta > 0$ s.t. $||x_1 - x_0|| < \delta \implies x(t, t_0, x_1)$ is also defined on $[t_0, b]$. Moreover, we have

$$||x(t,t_0,x_1)-x(t,t_0,x_0)|| \le \varepsilon, t \in [t_0,b].$$

Proof. Choose $0 < \varepsilon << 1$ such that

$$K = \{(t, x) : t \in [t_0, b], \|x - x(t, t_0, x_0)\| \le \varepsilon\} \subset G.$$

Let L be Lipschitz on the compact set K. It yields that f satisfies

$$|| f(t, x_1) - f(t, x_0) || \le L || x_1 - x_0 ||$$
, for $(t, x_0), (t, x_1) \in K$.

Taking $(\infty >) \delta = \varepsilon e^{-L(b-t_0)} > 0$ since b is finite, we claim that the interval of existence for $x(t,t_0,x_1)$ in K must not be less than $[t_0,b]$. We show it by contradiction. If $x(t,t_0,x_1)$ is defined on $[t_0,\overline{b}]$ with $\overline{b} < b$, then one has

$$||x(t, t_0, x_1) - x(t, t_0, x_0)|| \le ||x_1 - x_0|| + L \int_{t_0}^{t} ||x(s, t_0, x_1) - x(s, t_0, x_0)|| ds$$

$$\Rightarrow ||x(t, t_0, x_1) - x(t, t_0, x_0)|| \le ||x_1 - x_0|| e^{L(t - t_0)} \le \delta e^{L(t - t_0)} \le \varepsilon,$$
whenever $||x_1 - x_0|| < \delta$ (Gronwall inequality)

$$\Rightarrow \|x(\overline{b}, t_0, x_1) - x(\overline{b}, t_0, x_0)\| \le \|x_1 - x_0\| e^{L(\overline{b} - t_0)} < \delta e^{L(\overline{b} - t_0)}$$

$$= \varepsilon e^{-L(b - t_0)} e^{L(\overline{b} - t_0)} = \varepsilon e^{L(\overline{b} - b)} < \varepsilon.$$

This shows that the point $(\overline{b}, x(\overline{b}, t_0, x_1))$ is an interior of K, which can be extended further by Picard theorem. This is contradictive to the assumption. Applying Gronwall inequality once more on $t \in [t_0, b]$ yields

$$||x(t, t_0, x_1) - x(t, t_0, x_0)|| \le ||x_1 - x_0|| e^{L(t - t_0)} \le \delta e^{L(t - t_0)} < \varepsilon$$
, whenever $||x_1 - x_0|| < \delta$.

Therefore, $x(t, t_0, x_0)$ is a continuous function of x_0 . \Box

Remark 4.4 In fact, $x(t, t_0, x_0)$ is also Lipschitz on x_0 because there exists a constant C if b is finite s.t.

$$||x(t, t_0, x_0) - x(t, t_0, x_1)|| \le C ||x_0 - x_1||, t \in [t_0, b].$$

However, such a Lipschitz constant $C = C(t) = e^{L(t-t_0)} \le e^{L(b-t_0)}$ depends on the finite interval of $[t_0, b]$ with $b < \infty$. If $b \to \infty$, this property is not true!!! See $\delta = \varepsilon e^{-L(b-t_0)} \to 0$ as $b \to \infty$. That is, for any given $\varepsilon > 0$, we can't find any finite $\delta > 0$ to have a desired property!!! Continuous dependence on data for $[t_0, \infty)$ is in fact a global issue that needs an additional condition for sure. It is referred to **Lyapunov stability theory**.

Remark 4.5 The IVP is always wellposed if f is continuous and locally Lipschitz on any finite time interval $[t_0, b]$ with $b < \infty$. However, under such conditions, the continuous dependence w.r.t data is not true on an infinite time interval $[t_0, \infty)$.

Differentiability of Solution on Data

Theorem 4.3 Suppose that f(t,x) of the IVP is of C^2 on Q and $(t_0,x_0) \in U$.

Then the solution $x(t, t_0, x_0)$ of the IVP is continuously differentiable on $(t, t_0, x_0) \in G$.

Proof. By Theorem 4.1, we take a Picard sequence

$$x_{n+1}(t, t_0, x_0) = x_0 + \int_{t_0}^t f(s, x_n(s, t_0, x_0)) ds$$
, $n \in \mathbb{N}^+$, $(t, t_0, x_0) \in G$,

which is continuous on $(t, t_0, x_0) \in G$ for each $n \in N^+$ and uniformly convergent to the solution $x(t, t_0, x_0)$ of the IVP, which is continuous on $(t, t_0, x_0) \in G$.

Since $f'_x(t,x)$ is also continuously differentiable on Q, we construct an associated Picard matrix sequence as follows.

$$Y_{n+1}(t, t_0, x_0) = I_n + \int_{t_0}^t f_x'(s, x_n(s, t_0, x_0)) Y_n(t, t_0, x_0) ds,$$

where $n \in N^+$ and $(t, t_0, x_0) \in G$. It is similar to show that $\{Y_n(t, t_0, x_0)\}$ is well defined, continuous on $(t, t_0, x_0) \in G$ and uniformly convergent to $Y(t, t_0, x_0)$ that is continuous on $(t, t_0, x_0) \in G$ (Homework-2).

Next, we remark $\frac{\partial x_0(t,t_0,x_0)}{\partial x_0} = I_n = Y_0(t,t_0,x_0)$. Then by the definitions of

 $\{x_n(t, t_0, x_0)\}\$ and $\{Y_n(t, t_0, x_0)\}\$, we conclude by induction on $n \in \mathbb{N}^+$ that

$$\frac{\partial x_n(t, t_0, x_0)}{\partial x_0} = Y_n(t, t_0, x_0), \quad (t, t_0, x_0) \in G, \text{ for each } n \in \mathbb{N}^+.$$

Therefore, $\{Y_n(t,t_0,x_0)\}$ is a derivative sequence of $\{x_n(t,t_0,x_0)\}$ w.r.t x_0 . Since $\{x_n(t,t_0,x_0)\}$ and $\{Y_n(t,t_0,x_0)\}$ are both uniformly convergent, their limits are

$$\frac{\partial x(t,t_0,x_0)}{\partial x_0} = Y(t,t_0,x_0), \ (t,t_0,x_0) \in G.$$

Then we conclude that $\frac{\partial x(t, t_0, x_0)}{\partial x_0}$ is continuous on $(t, t_0, x_0) \in G$.

It is similar to show that

$$\frac{\partial x_{n+1}(t,t_0,x_0)}{\partial t_0} = -f(t_0,x_0) + \int_{t_0}^t f_x'(s,x_n(s,t_0,x_0)) \frac{\partial x_n(t,t_0,x_0)}{\partial t_0} ds$$

is well defined, continuous and uniformly convergent on $(t, t_0, x_0) \in G$. Then we

conclude that $\frac{\partial x(t, t_0, x_0)}{\partial t_0}$ is continuous on $(t, t_0, x_0) \in G$ (**Homework-3**). \Box

We have simultaneously proved the following theorem.

Theorem 4.4 Suppose that $f(t,x,\mu)$ of (E_{μ}) is of C^2 on $Q \times D_{\mu}$. That is, $f'_x(t,x,\mu)$ and $f'_{\mu}(t,x,\mu)$ are continuously differentiable in $Q \times D_{\mu}$. Then the solution $x(t,t_0,x_0,\mu)$ of (E_{μ}) is continuously differentiable on (t,t_0,x_0,μ) in some neighborhood. Moreover, $\frac{\partial x(t,t_0,x_0,\mu)}{\partial t_0}$, $\frac{\partial x(t,t_0,x_0,\mu)}{\partial x_0}$ and $\frac{\partial x(t,t_0,x_0,\mu)}{\partial \mu}$

are respectively the solutions of the following IVP

$$z' = f_x'(t, x(t, t_0, x_0, \mu)) z, \quad z(t_0) = -f(t_0, x_0, \mu);$$
 (F1)

$$z' = f_x'(t, x(t, t_0, x_0, \mu))z, \quad z(t_0) = I_n;$$
(F2)

$$z' = f_x'(t, x(t, t_0, x_0, \mu))z + f_\mu'(t, x(t, t_0, x_0, \mu)), \quad z(t_0) = O_{n \times s}.$$
 (F3)

Proof. By Theorem 4.3, $x(t, t_0, x_0, \mu)$ is continuously differentiable on its arguments (t, t_0, x_0, μ) . Then, we take derivatives on both side of

$$x(t,t_0,x_0,\mu) = x_0 + \int_{t_0}^t f(s,x(t,t_0,x_0,\mu),\mu) ds$$

to get (F1)-(F3) immediately. \Box

Remark 4.6 The IVP (F1)-(F3) are all linear systems that are seemly easy to be solved. However, they are only conceptual important because $f_x'(t, x(t, t_0, x_0, \mu))$ and $f'_{\mu}(t, x(t, t_0, x_0, \mu))$ are unknown without knowing the solution $x(t, t_0, x_0, \mu)$ in advance.

Remark 4.7 The condition f being C^2 both in Theorem 4.3 and Theorem 4.4 can be replaced by a mild condition of f being continuously differentiable. However, the present proof no longer workable and a more complicated method will be employed.

Summary

- Under mild conditions, the solutions depend continuously on the data for any finite closed interval.
- A good math model should have continuous dependence and differentiability on its data.
- Continuous dependence and differentiability are all local results.
- Continuous dependence of solution on data for infinite intervals is referred to Lyapunov stability, which is a new branch of ODE.

Homework

1) Suppose that G is open in $R \times R^n$, $f: G \to R^n$ is continuous and local Lipschitz. Show by contradiction method that for any compact set $K \subset G$ there exists L > 0 s.t.

$$|| f(t, y) - f(t, x) || \le L || x - y ||$$
, for all (t, y) , $(t, x) \in K$.

2) Do the Homework-1, 2, 3 indicated in Lecture 4.

